
Adafruit PiOLED - 128x32 Mini OLED for Raspberry Pi
Created by lady ada

Last updated on 2017-06-02 04:28:36 AM UTC

2
3
5
5
5
6
6
7
9
9

11
11
11

Guide Contents

Guide Contents
Overview
Usage
Step 1. Dependencies
Step 2. Enable i2c
Step 3. Verify I2C Device
Running Stats on Boot
Library Usage
More Demos & Examples
Speeding Up the Display
Downloads
Files
Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 2 of 12

Overview

If you're looking for the most compact lil' display for a Raspberry Pi (http://adafru.it/wF8) (most likely a Pi Zero (http://adafru.it/vIa))
project, this might be just the thing you need!

The Adafruit PiOLED is your little OLED pal, ready to snap onto any and all Raspberry Pi computers, to give you a little display. The
PiOLED comes with a monochrome 128x32 OLED, with sharp white pixels. The OLED uses only the I2C pins so you have plenty of
GPIO connections available for buttons, LEDs, sensors, etc. It's also nice and compact so it will fit into any case.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 3 of 12

https://www.adafruit.com/category/361
https://www.adafruit.com/category/813

These displays are small, only about 1" diagonal, but very readable due to the high contrast of an OLED display. This screen is
made of 128x32 individual white OLED pixels and because the display makes its own light, no backlight is required. This reduces the
power required to run the OLED and is why the display has such high contrast; we really like this miniature display for its crispness!

Using the display is very easy, we have a Python library for the SSD1306 chipset. Our example code allows you to draw images,
text, whatever you like, using the Python imaging library. Our tests showed 30 FPS update rates so you can do animations or simple
video.

Comes completely pre-assembled and tested so you don't need to do anything but plug it in and install our Python code! Works
with any Raspberry Pi computer, including the original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 4 of 12

Usage
We'll be using Python to control the display. In theory you can use any language you like that gives you access to the computer's I2C
ports, but our library is for Python only!

This guide assumes you have your Raspberry Pi all set up with an operating system, network connectivity and SSH!

Step 1. Dependencies
Before using the library you will need to make sure you have a few dependencies installed. Connect to your Pi using
SSH (http://adafru.it/vbC) and follow the steps below.

Install the RPi.GPIO library by running the following at the command line:

sudo apt-get update
sudo apt-get install build-essential python-dev python-pip
sudo pip install RPi.GPIO

Finally, install the Python Imaging Library (http://adafru.it/dvB) and smbus library by executing:

sudo apt-get install python-imaging python-smbus

Now to download and install the latest Adafruit SSD1306 python library code and examples, execute the following commands:

sudo apt-get install git
git clone https://github.com/adafruit/Adafruit_Python_SSD1306.git (http://adafru.it/dEH)
cd Adafruit_Python_SSD1306
sudo python setup.py install

Step 2. Enable i2c
To enable i2c, you can follow our detailed guide on configuring the Pi with I2C support here. (http://adafru.it/dEO)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and log back in. Run the following command from a
terminal prompt to scan/detect the I2C devices

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 5 of 12

https://www.raspberrypi.org/documentation/remote-access/ssh/
http://effbot.org/imagingbook/pil-index.htm
https://github.com/adafruit/Adafruit_Python_SSD1306.git
file:///adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was found

Step 3. Verify I2C Device
While in the Adafruit_Python_SSD1306 folder, you can run our stats example, which will query the Pi for details on CPU load, disk
space, etc. and print it on the OLED.

Run sudo python examples/stats.py to run the demo, you should see something like the below:

Running Stats on Boot
You can pretty easily make it so this handy program runs every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 6 of 12

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/Adafruit_Python_SSD1306/examples/stats.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

For more advanced usage, check out our linux system services guide (http://adafru.it/wFR)

Library Usage
Inside the examples subdirectory you'll find python scripts which demonstrate the usage of the library. These are covered in more
detail in our OLED guide here, so do check them out. (http://adafru.it/wF9)

To help you get started, I'll walk through the stats.py code below, that way you can use this file as the basis of a future project.

import time

import Adafruit_GPIO.SPI as SPI
import Adafruit_SSD1306

from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont

import subprocess

First a few modules are imported, including the Adafruit_SSD1306 module which contains the OLED display driver classes. You can
also see some of the Python Imaging Library modules like Image, ImageDraw, and ImageFont being imported. Those are, as you
can imagine, are for drawing images, shapes and text/fonts!

Raspberry Pi pin configuration:
RST = None
Note the following are only used with SPI:
DC = 23
SPI_PORT = 0
SPI_DEVICE = 0

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

128x64 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

Alternatively you can specify an explicit I2C bus number, for example
with the 128x32 display you would use:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, i2c_bus=2)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 7 of 12

file:///running-programs-automatically-on-your-tiny-computer/
file:///ssd1306-oled-displays-with-raspberry-pi-and-beaglebone-black/

128x32 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=8000000))

128x64 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=8000000))

Alternatively you can specify a software SPI implementation by providing
digital GPIO pin numbers for all the required display pins. For example
on a Raspberry Pi with the 128x32 display you might use:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, sclk=18, din=25, cs=22)

Below the configuration values is the display class setup. There are 4 variants of OLED displays, with 128x32 pixels or 128x64
pixels, and with I2C or with SPI.

However since the PiOLED is a 128x32 I2C display only you should only use the

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

variant for creating the display object! The rest can remain commented out.

Note that above, we initialize RST = None because the PiOLED does not require a reset pin.

Initialize library.
disp.begin()

Clear display.
disp.clear()
disp.display()

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new('1', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0,0,width,height), outline=0, fill=0)

The next bit of code will initialize the display library with begin() and clear the display with clear()and display().

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the image buffer is created in 1-bit mode with
the '1' parameter, this is important because the display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have to clear the screen again, but its a good
example of how to draw a shape!

Load default font.
font = ImageFont.load_default()

Alternatively load a TTF font.
Some other nice fonts to try: http://www.dafont.com/bitmap.php
#font = ImageFont.truetype('Minecraftia.ttf', 8)

Once the display is initialized and a drawing object is prepared, you can draw shapes, text and graphics using PIL's drawing
commands (http://adafru.it/dfH). Here we are loading the default font, which works fine, but there's other fonts you can load.

Next the code loads a built-in default font and draws a few lines of text. You can also load your own TrueType font and use it to
render fancy text in any style you like

while True:

 # Draw a black filled box to clear the image.
 draw.rectangle((0,0,width,height), outline=0, fill=0)

 # Shell scripts for system monitoring from here : https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-load
 cmd = "hostname -I | cut -d\' \' -f1"
 IP = subprocess.check_output(cmd, shell = True)

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 8 of 12

http://effbot.org/imagingbook/imagedraw.htm

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
 CPU = subprocess.check_output(cmd, shell = True)
 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%sMB %.2f%%\", $3,$2,$3*100/$2 }'"
 MemUsage = subprocess.check_output(cmd, shell = True)
 cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%dGB %s\", $3,$2,$5}'"
 Disk = subprocess.check_output(cmd, shell = True)

 # Write two lines of text.

 draw.text((x, top), "IP: " + str(IP), font=font, fill=255)
 draw.text((x, top+8), str(CPU), font=font, fill=255)
 draw.text((x, top+16), str(MemUsage), font=font, fill=255)
 draw.text((x, top+25), str(Disk), font=font, fill=255)

 # Display image.
 disp.image(image)
 disp.display()
 time.sleep(.1)

Using the subprocess class, python can utilize linux commands to access the Pi's system information. This loop updates the screen
at 10 times a second.

That's all there is to the stats.py code!

More Demos & Examples
You can check out our other examples in the example, just make sure to edit each one with nano animate.py for example, and find
the line that says:

Raspberry Pi pin configuration:
RST = 24

and change it to:

Raspberry Pi pin configuration:
RST = None # PiOLED does not require reset pin

and make sure that the configuration section where you choose which type of display, looks like this

128x32 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

128x64 display with hardware I2C:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

128x32 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

128x64 display with hardware SPI:
disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

That is, we'll be using I2C 128x32 display!

Speeding Up the Display
For the best performance, especially if you are doing fast animations, you'll want to tweak the I2C core to run at 1MHz. By default it
may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 9 of 12

reboot to 'set' the change.

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 10 of 12

Downloads

Files
EagleCAD PCB files on GitHub (http://adafru.it/wFa)
UG-2832HSWEG02 (http://adafru.it/qrf) Datasheet
SSD1306 (http://adafru.it/aJK) Datasheet
Fritzing object in Adafruit Fritzing Library (http://adafru.it/c7M)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-pioled-128x32-mini-oled-for-
raspberry-pi

Page 11 of 12

https://github.com/adafruit/Adafruit-PiOLED-128x32-PCB
https://cdn-shop.adafruit.com/datasheets/UG-2832HSWEG02.pdf
http://www.adafruit.com/datasheets/SSD1306.pdf
https://github.com/adafruit/Fritzing-Library/

© Adafruit Industries Last Updated: 2017-06-02 04:28:35 AM UTC Page 12 of 12

	Guide Contents
	Overview
	Usage
	Step 1. Dependencies
	Step 2. Enable i2c
	Step 3. Verify I2C Device
	Running Stats on Boot
	Library Usage
	More Demos & Examples
	Speeding Up the Display
	Downloads
	Files
	Schematic & Fabrication Print

